Открытый доступ Открытый доступ  Закрытый доступ Доступ платный или только для подписчиков

Эволюция методов формирования стерически стабилизированных липосом, модифицированных ПЭГ (обзор)

Анастасия Сергеевна Носова, О. О. Колоскова, Ю. Л. Себякин, М. Р. Хаитов

Аннотация


В обзоре представлены некоторые методы создания стабильных липосомальных систем доставки лекарственных препаратов. Наибольшее внимание уделено использованию ПЭГ в качестве гидрофильного покрытия липидного бислоя. Рассмотрены различные подходы формирования пегилированных липосом. Показано, что пегилирование способствует возникновению стерического барьера на поверхности липосом, препятствует взаимодействию липосом с белками плазмы крови и захвату частиц макрофагами, и, как следствие, увеличению времени циркулирования в русле крови. Переход от «обычных» липосом к пегилированным, а далее к липосомам с «молекулярным адресом», является эволюционным процессом формирования современных транспортных средств доставки биологически активных соединений.

Ключевые слова


липосомы, ПЭГ, адресная доставка, 1,3-диполярное циклоприсоединение, click-химия, транспорт миРНК

Ссылки


Jensen G. M., Bunch T. H. Conventional liposome performance and evaluation: Lessons from the development of Vescan / J. Liposome Res. 2007. V. 17. Nos. 3 – 4. P. 121 – 137.

Wang X., et al. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine / Drug Deliv. 2015. V. 23. No. 4. P. 1 – 9.

Bunker A., Magarkar A., Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational study of lipid membranes, liposomes and their PEGylation / Biochim. Biophys. Acta. 2016. V. 1858. No. 10. P. 2334 – 2352.

Hoffman A. S. The origins and evolution of «controlled» drug delivery systems / J. Control. Rel. 2008. V. 132. No. 3. P. 153 – 163.

Fehring V. et al. Delivery of therapeutic siRNA to the lung endothelium via novel Lipoplex formulation DACC / Mol. Ther. 2014. V. 22. No. 4. P. 811 – 820.

Tagami T. et al. Effect of siRNA in PEG-coated siRNA-lipoplex on anti-PEG IgM production / J. Control. Rel. 2009. V. 137. No. 3. P. 234 – 240.

Pozzi D. et al. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells / Nanoscale. 2014. V. 6. No. 5. P. 2782 – 2792.

Immordino M. L., Dosio F., Cattel L. Stealth liposomes: Review of the basic science, rational, and clinical applications, existing and potential / Int. J. Nanomed. 2006. V. 1. No. 3. P. 297 – 315.

Liu Y., Hu Y., Huang L. Influence of polyethylene glycol density and surface lipid on pharmacokinetics and biodistribution of lipid-calcium-phosphate nanoparticles / Biomaterials. 2014. V. 35. No. 9. P. 3027 – 3034.

Armstrong J. K. et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients / Cancer. 2007. V. 110. No. 1. P. 103 – 111.

Richter A. W., Akerblom E. Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethelene glycol modified proteins / Int. Archs Allergy Appl. Immun. 1983. V. 70. P. 124 – 131.

Pereira M. A. et al. PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: Release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy / Eur. J. Pharm. Sci. 2008. V. 33. No. 1. P. 42 – 51.

Chen M. X. et al. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery / Carbohydr. Polym. 2014. V. 111. P. 298 – 304.

?alva E. et al. Corrigendum to «The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1? and VEGF» [Int. J. Pharm. (2015) 478 (147 – 154)] (S0378517314007881) (10.1016/j.ijpharm.2014.10. 065) / Int. J. Pharm. 2017. V. 520. Nos. 1 – 2. P. 297.

Mizrahy S. et al. Hyaluronan-coated nanoparticles: The influence of the molecular weight on CD44-hyaluronan interactions and on the immune response / J. Control. Rel. 2011. V. 156. No. 2. P. 231 – 238.

Huggins D. J., Sherman W., Tidor B. Rational approaches to improve selectivity in drug design / J. Med. Chem. 2012. V. 55. P. 1424 – 1444.

Nag O. K. et al. Liposomes modified with superhydrophilic polymer linked to a nonphospholipid anchor exhibit reduced complement activation and enhanced circulation / J. Pharm. Sci. 2015. V. 104. No. 1. P. 114 – 123.

van den Hoven J. M. et al. Complement activation by PEGylated liposomes containing prednisolone / Eur. J. Pharm. Sci. 2013. V. 49. No. 2. P. 265 – 271.

Hensley M. L. et al. The costs and efficacy of liposomal doxorubicin in platinum-refractory ovarian cancer in heavily pretreated patients / Gynecol. Oncol. 2001. V. 82. No. 3. P. 464 – 469.

Sarris A. H. et al. Original article liposomal vincristine in relapsed non-Hodgkin вЂTM s lymphomas: Early results of an ongoing phase II trial / Ann. Oncol. 2000. V. 11. December. P. 69 – 72.

Allen T. M., Cullis P. R. Liposomal drug delivery systems: From concept to clinical applications / Adv. Drug Deliv. Rev. 2013. V. 65. No. 1. P. 36 – 48.

Noble G. T. et al. Ligand-targeted liposome design: Challenges and fundamental considerations / Trends Biotechnol. 2014. V. 32. No. 1. P. 32 – 45.

Kapoor M., Burgess D. J. Targeted delivery of nucleic acid therapeutics via nonviral vectors / Devarajan P. V. and Jain S. (eds.) Targeted Drug Delivery: Concepts and Design. — Springer, 2015. P. 271 – 312.

Sawant R. R., Torchilin V. P. Challenges in development of targeted liposomal therapeutics / AAPS J. 2012. V. 14. No. 2. P. 303 – 315.

Maruyama K. PEG-immunoliposome / Biosci. Rep. 2002. V. 22. No. 2. P. 251 – 266.

Torchilin V. P. et al. p-Nitrophenylcarbonyl-¬PEG-¬PE-¬liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups / Biochim. Biophys. Acta Biomembr. 2001. V. 1511. No. 2. P. 397 – 411.

R. Petrilli, J. de O. Eloy, R. J. Lee, R. F. V. Lopez / Preparation of Immunoliposomes by Direct Coupling of Antibodies Based on a Thioether Bond // in a book «Recombinant Glycoprotein Production». 2018. pp. 229 – 237.

Kirpotin D. B. et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models / Cancer Res. 2006. V. 66. No. 13. P. 6732 – 6740.

Riviere K. et al. Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration / J. Drug Target. 2011. V. 19. No. 1. P. 14 – 24.

Работкина М. А., Себякин Ю. Л. Разработка метода синтеза компонента стерически стабилизированной липосомальной системы с RGD-вектором активного нацеливания / Биофарм. журн. 2011. Т. 3. № 4. С. 21 – 26.

Belhadj Z. et al. Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery / J. Control. Rel. 2017. V. 255. P. 132 – 141.

Lakshminarayanan A. et al. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells / Nanoscale. 2015. P. 16921 – 16931.

D’Souza A. A., Devarajan P. V. Asialoglycoprotein receptor mediated hepatocyte targeting - Strategies and applications / J. Control. Rel. 2015. V. 203. P. 126 – 139.

Shimada K. et al. Biodistribution of liposomes containing synthetic galactose-terminated diacylglyceryl-poly(ethyleneglycol)s / Biochim. Biophys. Acta Biomembr. 1997. V. 1326. No. 2. P. 329 – 341.

Gur’eva L. Y., Bol’sheborodova A. K., Sebyakin Y. L. Design, synthesis, and properties of neoglycolipids based on ethylene glycoles conjugated with lactose as components of targeted delivery systems of biologically active compounds / Rus. J. Org. Chem. 2012. V. 48. No. 8. P. 1047 – 1054.

Budanova U. A., Koloskova O. O., Sebyakin Y. L. Synthesis and properties of a folic acid-polyethylene glycol conjugate for systems intended for directed delivery of anticancer compounds / Mendeleev Commun. 2010. V. 20. No. 6. P. 326 – 328.

Suzuki R. et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome / Int. J. Pharm. 2008. V. 346. Nos. 1 – 2. P. 143 – 150.

Nellis D. F. et al. Preclinical manufacture of anti-HER2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis / Biotechnol. Prog. 2005. V. 21. No. 1. P. 221 – 232.

Brik A. et al. Rapid diversity-oriented synthesis in microtiter plates for in situ screening of hiv protease inhibitors / Chem. BioChem. 2003. V. 4. No. 11. P. 1246 – 1248.

J?lck R. I., Berg R. H., Andresen T. L. Solid-phase synthesis of PEGylated lipopeptides using click chemistry / Bioconjug. Chem. 2010. V. 21. P. 807 – 810.

P?rez-Balderas F. et al. Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts / Org. Lett. 2003. V. 5. No. 11. P. 1951 – 1954.

Ewert K. K. et al. Synthesis of linear and cyclic peptide – PEG – lipids for stabilization and targeting of cationic liposome – DNA complexes / Bioorg. Med. Chem. Lett. 2016. V. 26. No. 6. P. 1618 – 1623.

Cavalli S. et al. The chemical modification of liposome surfaces via a copper-mediated [3 + 2] azide — alkyne cycloaddition monitored by a colorimetric assay / Chem. Commun. 2006. P. 3193 – 3195.

Hassane F. S., Frisch B., Schuber F. Targeted liposomes: Convenient coupling of ligands to preformed vesicles using «click chemistry» / Bioconjug. Chem. 2006. V. 17. No. 3. P. 849 – 854.

Kumar A. et al. «Clickable», polymerized liposomes as a versatile and stable platform for rapid optimization of their peripheral compositions / Chem. Commun. (Camb). 2010. V. 46. No. 31. P. 5746 – 5748.

Колоскова О. О. и др. Конструирование стерически стабилизированной липосомальной формы доксорубицина путем модификации поверхности по реакции 1,3-диполярного циклоприсоединения / Биофарм. журн. 2010. Т. 2. № 6. С. 16 – 20.

Колоскова О. О., Буданова У. А., Себякин Ю. Л. Дизайн многофункциональных фолат-нацеленных систем доставки лекарственных препаратов / Биофарм. журн. 2011. Т. 3. № 4. С. 14 – 20.

N. Golkar, A. M. Tamaddon, S. M. Samani / Effect of lipid composition on incorporation of trastuzumab-PEG-lipid into nanoliposomes by post-insertion method: physicochemical and cellular charac¬terization // J. Liposome Res. 2015. V. 26 (2). P. 113 – 125.

Xia Y., Tian J., Chen X. Effect of surface properties on liposomal siRNA delivery / Biomaterials. 2016. V. 79. P. 56 – 68.

Suk J. S. et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery / Adv. Drug Deliv. Rev. 2016. V. 99. P. 28 – 51.

Buyens K. et al. Elucidating the encapsulation of short interfering RNA in PEGylated cationic liposomes / Langmuir. 2009. V. 25. No. 9. P. 4886 – 4891.

Leus N. G. J. et al. Effective siRNA delivery to inflamed primary vascular endothelial cells by anti-E-selectin and anti-VCAM-1 PEGylated SAINT-based lipoplexes / Int. J. Pharm. 2014. V. 459. Nos. 1 – 2. P. 40 – 50.

Santel A. et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. / Gene Ther. 2006. V. 13. No. 16. P. 1222 – 1234.

Miller C. R. et al. Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes / Biochemistry. 1998. V. 37. No. 37. P. 12875 – 12883.

Oliveira A. C. N. et al. Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells / Acta Biomater. 2015. V. 25. P. 216 – 229.

Jiang N. et al. A Novel In vivo siRNA delivery system specifically targeting liver cells for protection of ConA-induced fulminant hepatitis / PLoS One. 2012. V. 7. No. 9. P. 1 – 10.

Yang T. et al. In vitro evaluation of optimized liposomes for delivery of small interfering RNA / J. Liposome Res. 2014. V. 24. No. 4. P. 270 – 279.

Wu S. Y. et al. Development of a novel method for formulating stable siRNA-loaded lipid particles for in vivo use / Pharm. Res. 2009. V. 26. No. 3. P. 512 – 522.


Полный текст: PDF

Ссылки

  • Ссылки не определены.


** ** ** ** ** **

ISSN: 2073-8099

** ** ** ** ** **

Подписаться на наши издания Вы можете через почтовые каталоги Объединенный каталог «Пресса России» «Урал Пресс», «Ивис»«Прессинформ» и «Профиздат».

 

Наши партнеры:

iIPhEB - Международная выставка и форум по фармацевтике и биотехнологиям, 2–4 апреля 2024

Семинар R&D для R&D, 12–13 апреля 2024