Открытый доступ Открытый доступ  Закрытый доступ Доступ платный или только для подписчиков

Использование специфических пептидов для адресной доставки наночастиц с противоопухолевыми лекарствами (обзор)

Владимир Николаевич Прозоровский, Татьяна Ивановна Торховская, Любовь Викторовна Кострюкова, Ольга Михайловна Ипатова

Аннотация


В обзоре суммирована имеющаяся информация о пептидах, способных к специфическому связыванию с белками клеток и тканей опухолей, а также пептидах, которые могут проникать через плазматические мембраны в клетки. Активно применяемый в последние годы метод фагового дисплея выявил более 700 пептидов, аффинных к опухолям, из которых лишь для небольшого числа обнаружены мишени – белки с повышенной экспрессией в опухолях. При конъюгировании таких пептидов с липидными или полимерными наночастицами, транспортирующими противоопухолевое лекарство, наблюдали его повышенный захват тканями и клетками опухолей и более эффективное цитостатическое действие на моделях опухолей у мышей. Рассмотрены методы конъюгации пептидов с поверхностью липосом и липидных наночастиц с учетом сохранения аффинных свойств и стабильности используемого лиганда.

Ключевые слова


аффинные к опухолям пептиды, клеточно-проникающие пептиды, адресная доставка лекарств, липосомы, наночастицы

Ссылки


Barenholz Y., Peer D. Liposomes and other assemblies as drugs and nano-drugs: from basic and translational research to the clinics / J. Control. Rel. 2012. V. 160. No. 2. P. 115 – 116.

Duncan R., Gaspar R. Nanomedicine(s) under the microscope / Mol. Pharm. 2011. V. 8. P. 2101 – 2141.

Allen T. M., Cullis P. R. Liposomal drug delivery systems: from concept to clinical applications / Adv. Drug Deliv. Rev. 2013. V. 65. P. 36 – 48.

Crommelin D. J., Florence A. T. Towards more effective advanced drug delivery systems / Int. J. Pharm. 2013. V 454. No. 1. Р. 496 – 511.

Gautam A., Kapoor P., Chaudhary K., Kumar R., Raghava G. P. Tumor homing peptides as molecular probes for cancer therapeutics, diagnostics and theranostics / Curr. Med. Chem. 2014. V. 21. No. 21. Р. 2367 – 2391.

Gestin M., Dowaidar M., Langel Ь. Uptake mechanism of cell-penetrating peptides / Adv. Exp. Med. Biol. 2017. V. 1030. P. 255 – 264.

Liu R., Li X., Xiao W., Lam K. S. Tumor-targeting peptides from combinatorial libraries / Adv. Drug Deliv. Rev. 2017. V. 110 – 111. P. 13 – 37.

Zvibel I., Brill S., Halpern Z., Papa M. Hepatocyte extracellular matrix modulates expression of growth factors and growth factor receptors in human colon cancer cells / Exp. Cell Res. 1998. V. 245. No. 1. P. 123 – 131.

Mohanty C., Das M., Kanwar J. R., Sahoo S. K. Receptor mediated tumor targeting: an emerging approach for cancer therapy / Curr. Drug Deliv. 2011. V. 8. No. 1 P. 45 – 58.

Kapoor P., Singh H., Gautam A., et al. A database of tumor homing peptides / PLoS One. 2012. V. 7. No. 4. e35187. Epub 2012 Apr 16.

Кузьмичева Г. А., Белявская В. А. Пептидный фаговый дисплей в биотехнологии и биомедицине / Биомед. химия. 2016. Т. 62. № 5. С. 481 – 495.

Reubi J. C. Peptide receptors as molecular targets for cancer diagnosis and therapy / Endocr. Rev. 2003. V. 24. P. 389 – 427.

Ellerby H. M., Arap W., Ellerby L. M., et al. Anticancer activity of targeted pro-apoptotic peptides / Nat. Med. 1999. V. 5. P. 1032 – 1038.

van der Meel R., Vehmeijer L. J., Kok R. J., et al. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status / Adv. Drug Deliv. Rev. 2013. V. 65. P. 1284 – 1298.

Laakkonen P., Vuorinen K. Homing peptides as targeted delivery vehicles / Integr. Biol. (Camb). 2010. V. 2. P. 326 – 337.

Corti A., Pastorino F., Curnis F., et al. Targeted drug delivery and penetration into solid tumors / Med. Res. Rev. 2012. V. 32. No. 5. P. 1078 – 1091.

Ruoslahti E. The RGD story: a personal account / Matrix Biol. 2003. V. 22. P. 459 – 465.

Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects / J. Amino Acids. 2012. V. 2012. Article ID 967347.

Arap W., Pasqualini R., Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model / Science. 1998. V. 279. P. 377 – 380.

Bцhme D., Beck-Sickinger A. G. Drug delivery and release systems for targeted tumor therapy / J. Pept. Sci. 2015. V. 21. No. 3. P. 186 – 200.

Nasongkla N., Shuai X., Ai H., Weinberg B. D., et al. cRGD functionalized polymer micelles for targeted doxorubicin delivery / Angew. Chem. Int. Ed. Engl. 2004. V. 43. No. 46. P. 6323 – 6327.

Song Q., Wang X., Wang Y., et al. Reduction responsive self-assembled nanoparticles based on disulfide-linked drug-drug conjugate with high drug loading and antitumor efficacy / Mol. Pharm. 2016; V. 13. No. 1. Р. 190 – 201.

Zhou D., Zhang G., Gan Z. c(RGDfK) decorated micellar drug delivery system for intravesical instilled chemotherapy of superficial bladder cancer / J. Control. Rel. 2013. V. 169. No. 3. Р. 204 – 210.

Sun M. G., Shi J. F., Li X. Y., et al. Targeting epirubicin plus quinacrine liposomes modified with DSPE-PEG2000-C(RGDfK) conjugate for eliminating invasive breast cancer / J. Biomed. Nanotechnol. 2015. V. 11. No. 8. P. 1339 – 1353.

Houseman B. T., Mrksich M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion / Biomaterials .2001. V. 22. Р. 943 – 955.

Dijkgraaf I., Kruijtzer J. A., Frielink C., et al. Synthesis and biological evaluation of potent alpha, beta3-integrin receptor antagonists / Nucl. Med. Biol. 2006. V. 33. No. 8. Р. 953 – 961.

Dissanayake S., Denny W. A., Gamage S., Sarojini V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides / J. Control. Rel. 2017. V. 250. P. 62 – 67.

Akhtar M. J., Ahamed M., Alhadlaq H. A., et al. Targeted anticancer therapy: Overexpressed receptors and nanotechnology / Clin. Chim. Acta. 2014. V. 436. P. 78 – 92.

Yu X. D., Yang R., Leng C. J. Truncation, modification, and optimization of MIG6 (segment 2) peptide to target lung cancer-related EGFR / Comput. Biol. Chem. 2016. V. 61. P. 251 – 257.

Taheri A., Dinarvand R., Atyabi F., et al. Trastuzumab decorated methotrexate-human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumour cells / Eur. J. Pharm. Sci. 2012. V. 47. P. 331 – 340.

Song S., Liu D., Peng J., et al. Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo / FASEB J. 2009. V. 23. P. 1396 – 1404.

Liu C. W., Lin W. J. Polymeric nanoparticles conjugate a novel heptapeptid / Int. J. Nanomed. 2012. V. 7. P. 4749 – 4767.

Han C. Y., Yue L. L., Tai L. Y. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro / Int. J. Nanomed. 2013. V. 8. P. 1541 – 159.

Turner N., Grose R. Fibroblast growth factor signalling: from development to cancer / Nat. Rev. Cancer. 2010. V. 10. P. 116 – 129.

Togami K., Miyao A., Miyakoshi K., et al. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis / Biol. Pharm. Bul. 2015. V. 38. No. 2. P. 270 – 276.

Leu F. P., Nandi M. GPCR somatostatin receptor extracellular loop 2 is a key ectodomain for making subtype-selective antibodies with agonist-like activities in the pancreatic neuroendocrine tumor BON cell line / Pancreas. 2010. V. 39. No. 8. P. 1155 – 1566.

Millar R. P., Newton C. L. The year in G protein-coupled receptor research / Mol. Endocrinol. 2010. V. 24. No. 1. P. 261 – 274.

O’Hayre M., Degese M. S., Gutkind J. S. Novel insights into G protein and G protein-coupled receptor signaling in cancer / Curr. Opin. Cell Biol. 2014. V. 27. P. 126 – 135.

Romanova E. V., Sweedler J. V. Peptidomics for the discovery and characterization of neuro-peptides and hormones / Trends Pharmacol. Sci. 2015. V. 36. No. 9. P. 579 – 588.

Lapa C., Hдnscheid H., Wild V., et al. Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy / Oncotarget. 2016. V. 7. No. 15. P. 20033 – 20040.

Accardo A., Salsano G., Morisco A., et al. Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: A potential theranostic agent / Int. J. Nanomed. 2012. V. 7. P. 2007 – 2017.

Cui D., Lu X., Yan C., et al. Gastrin-releasing peptide receptor-targeted gadolinium oxide-based multifunctional nanoparticles for dual magnetic resonance / fluorescent molecular imaging of prostate cancer / Int. J. Nanomed. 2017. V. 12. P. 6787 – 6797.

Muсoz M., Coveсas R. Involvement of substance P and the NK-1 receptor in cancer progression / Peptides. 2013. V. 48. P. 1 – 9.

Colombo G., Sordi A., Turcatti F., et al. Change in gene expression profile induced by alpha-melanocyte stimulating hormone in a malignant mesothelioma cell line / Cell Mol. Biol. (Noisy-le-grand). 2006. V. 52. No. 2. P. 69 – 74.

Valdehita A., Bajo A. M., Fernбndez-Martнnez A. B. Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer / Peptides. 2010. V. 31. P. 2035 – 2045.

Wu Z., Martinez-Fong D., Trйdaniel J., Forgez P. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy / Front. Endocrinol. 2012. V. 3. P. 184.

Chen H., Wang H., Qin X. J., et al. A bestatin-based fluorescent probe for aminopeptidase N cell imaging / Chin. Chem. Lett. 2015. V. 26. P. 513 – 516.

Pasqualini R., Koivunen E., Kain R., et al. Aminopeptidase № is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis / Cancer Res. 2000. V. 60. No. 3. P. 722 – 727.

Wang X., Wang B., Zhang Q. Anti-tumor targeted drug delivery systems mediated by aminopeptidaseN / CD13 / Acta Pharm. Sinica B. 2011. V. 1. No. 2. P. 80 – 83.

Tokuhara T., Hattori N., Ishida H., et al. Clinical significance of aminopeptidase N in non small cell lung cancer / Clin. Cancer Res. 2006. V. 12. No. 13. P. 3971 – 3978.

Dunne M., Zheng J., Rosenblat J., et al. APN / CD13-targeting as a strategy to alter the tumor accumulation of liposomes / J. Control. Rel. 2011. V. 154. P. 298 – 305.

Corti A., Curnis F., Arap W., Pasqualini R. The neovasculature homing motif NGR: more than meets the eye / Blood. 2008. V. 112. P. 2628 – 2635.

Graziadio A., Zanda M., Frau S., et al. NGR TUMOR-HOMING PEptides: Structural requirements for effective APN (CD13) targeting / Bioconjug. Chem. 2016. V. 27. No. 5. P. 1332 – 1340.

Ahmed S., Kaur K. Design, synthesis, and validation of an in vitro platform peptide-whole cell screening assay using MTT reagent / J. Taibah Univ. Sci. 2017. V. 11. No. 3. P. 487 – 496.

Pastorino F., Brignole C., Di Paolo D., et al. Liposomal chemotherapy via both tumor cell-specific and tumor vasculaturespecific ligands potentiates therapeutic efficacy / Cancer Res. 2006. V. 66. No. 20. P. 10073 – 1082.

Yang Y., Yang Y., Xie X., et al. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy / Biomaterials. 2014. V. 35. No. 14. P. 4368 – 4381.

Luo L. M., Huang Y., Zhao B. X., et al. Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel / Biomaterials. 2013. V. 34. No. 4. P. 1102 – 1114.

Gu Z., Chang M., Fan Y., et al. NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel / Colloid. Surf. B. Biointer. 2017. V. 160. P. 395 – 405.

Zuccari G., Milelli A., Pastorino F., et al. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma / J. Control. Rel. 2015. V. 211. P. 44 – 52.

Di Paolo D., Pastorino F., Zuccari G., et al. Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma / J. Control. Rel. 2013. V. 170. No. 3. P. 445 – 451.

Li S., Wang X. In vitro and in vivo evaluation of novel NGR-modified liposomes containing brucine / Int. J. Nanomed. 2017. V. 12. P. 5797 – 5804.

Chen J., Lin A., Peng P., et al. Lipid composition has significant effect on targeted drug delivery properties of NGR-modified liposomes / Drug Deliv. 2016. V. 23. No. 4. P. 1426 – 1433.

Laakkonen P., Akerman M. E., Biliran H., et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells / Proc. Natl. Acad. Sci. USA. 2004. V. 101. No. 25. P. 9381 – 9386.

Gьrsoy R. N., Зevik Ц. Design, characterization and in vitro evaluation of smedds containing an anticancer peptide, linear LyP-1 / Pharm. Dev. Technol. 2014. V. 19. No. 4. P. 486 – 490.

Yan Z., Zhan C., Wen Z., et al. LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics / Nanotechnology. 2011. V. 22. No. 41. P. 415103.

Essler M., Ruoslahti E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature / Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 2252 – 2257.

Cordova A., Woodrick J., Grindrod S., et al. Aminopeptidase P mediated targeting for breast tissue specific conjugate delivery / Bioconjug. Chem. 2016. V. 27. No. 9. P. 1981 – 1990.

Yang W., Luo D., Wang S., et al. TMTP1, a novel tumor-homing peptide specifically targeting metastasis / Clin. Cancer Res. 2008. V. 14. No. 17. P. 5494 – 5502.

Wang Z., Yu Y., Dai W., et al. The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer / Biomaterials. 2012. V. 33. No. 33. P. 8451 – 8460

Mahdaviani P., Bahadorikhalili S., Navaei-Nigjeh M., et al. Peptide functionalized polyethylene glycol-polycaprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells / Mater. Sci. Eng. C. Mater. Biol. Appl. 2017. V. 80. P. 301 – 312.

Zhang J. S. H., Schwab M. Neuroblastoma tumor cell-binding peptides identified through random peptide phage display / Cancer Lett. 2001. V. 171. P. 153 – 164.

Askoxylakis V. Z. S., Mier W., Graham K., et al. Pre-clinical evaluation of the breast cancer cell-binding peptide p160 / Clin. Cancer Res. 2005. V. 11. P. 6705 – 6712.

Zanuy D., Curco D., Nussinov R., Aleman C. Influence of the dye presence on the conformational preferences of CREKA, a tumor homing linear pentapeptide / Biopolymers. 2009. V. 92. P. 83 – 93.

Ding H., Prodinger W. M., Kopeиek J. Two-step fluorescence screening of CD21-binding peptides with one-bead one-compound library and investigation of binding properties of N-(2-hydroxypropyl)methacrylamide copolymer-peptide conjugates / Biomacromolecules. 2006. V. 7. No. 11. P. 3037 – 3046.

Koren E., Torchilin V. P. Cell-penetrating peptides: Breaking through to the other side / Trends Mol. Med. 2012. V. 18. P. 385 – 393.

Heitz F., Morris M. C., Divita G. Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics / Br. J. Pharmacol. 2009. V. 157. P. 195 – 206.

Wender P. A., Mitchell D. J., Pattabiraman K., et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters / Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 13003 – 13008.

Futaki S., Nakase I., Tadokoro A., Takeuchi T., Jones A. Arginine-rich peptides and their internalization mechanisms / Biochem. Soc. Trans. 2007. V. 35. P. 784 – 787.

Ruben S., Perkins A., Purcell R., et al. Structural and functional characterization of human immunodeficiency virus tat protein / J. Virol. 1989. V. 63. P. 1 – 8.

Koren E., Apte A., Sawant R. R., Grunwald J., Torchilin V. P. Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements / Drug Deliv. 2011. V. 18. P. 377 – 384.

Zhang P., Lock L. L., Cheetham A. G., Cui H. Enhanced cellular entry and efficacy of TAT conjugates by rational design of the auxiliary segment / Mol. Pharm. 2014. V. 11. P. 964 – 973.

Forsman H., Bylund J., Oprea T. I., et al. The leukocyte chemotactic receptor FPR2, but not the closely related FPR1, is sensitive to cell-penetrating pepducins with amino acid sequences descending from the third intracellular receptor loop / Biochim. Biophys. Acta. 2013. V. 1833. P. 1914 – 1923.

Rothbard J. B., Jessop T. C., Lewis R. S., Murray B. A., Wender P. A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of Guanidinium-rich peptides into cells / J. Am. Chem. Soc. 2004. V. 126. P. 9506 – 9507.

Higa M., Katagiri C., Shimizu-Okabe C., et al. Identification of a novel cell-penetrating peptide targeting human glioblastoma cell lines as a cancer-homing transporter / Biochem. Biophys. Res. Commun. 2015. V. 457. P. 206 – 212.

Biswas S., Dodwadkar N. S., Deshpande P. P., Parab S., Torchilin V. P. Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity / Eur. J. Pharm. Biopharm. 2013. V. 84. P. 517 – 525.

Myrberg H., Zhang L., Mдe M., Langel Ь. Design of a tumor-homing cell-penetrating peptide / Bioconjug. Chem. 2008. V. 19. P. 70 – 75.

Regberg J., Srimanee A., Langel Ь. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies / Pharmaceuticals. 2012. V. 5. P. 991 – 1007.

Kersemans V., Cornelissen B. Targeting the tumour: Cell penetrating peptides for molecular imaging and radiotherapy / Pharmaceuticals. 2010. V. 3. P. 600 – 620.

Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer / Biochim. Biophys. Acta. 2011. V. 1816. P. 232 – 246.

Soler M., Gonzбlez-Bбrtulos M., Figueras E., et al. Enzyme-triggered delivery of chlorambucil from conjugates based on the cell-penetrating peptide BP16 / Org. Biomol. Chem. 2015. V. 13. P. 1470 – 1480.

Wang R.-H., Cao H.-M., Tian Z.-J., et al. Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer / Oncol. Rep. 2015. V. 33. P. 783 – 791.

Marquйs-Gallego P., de Kroon A. I. Ligation strategies for targeting liposomal nanocarriers / Biomed. Res. Int. 2014. V. 2014. P. 129458. Epub 2014 Jul 14.

Banerjee R., Tyagi P., Li S., Huang L. Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells / Int. J. Cancer. 2004. V. 112. No. 4. P. 693 – 700.

Maurice T., Su T. P. The pharmacology of sigma-1 receptors / Pharmacol Ther. 2009. V. 124. P. 195 – 206.

Kim S., Kim D., Jung H. H. Bio-inspired design and potential biomedical applications of a novel class of high-affinity peptides / Angew. Chem: Int. Ed. 2012. V. 51. No. 8. P. 1890 – 1894.

Yu T. K., Shin S. A., Kim E. H., et al. An unusual protein-protein interaction through coupled unfolding and binding / Angew. Chem. Int. Ed. Engl. 2014. V. 53. No 37. P. 9784 – 9787.

Jolck R. I., Feldborg L. N., Andersen S., et al. Engineering liposomes and nanoparticles for biological targeting / Adv. Biochem. Eng. Biotechnol. 2011. V. 125. P. 251 – 280.

Hassane F. S., Frisch B., Schuber F. Targeted liposomes: convenient coupling of ligands to pre-formed vesicles using «click chemistry» / Bioconjug. Chem. 2006. V. 17. No. 3. P. 849 – 854.

Koo H., Lee S., Na J. H., et al. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles / Angew. Chem. Int. Ed. 2012. V. 51. No. 47. P. 11836 – 11840

Yamada A., Taniguchi Y., Kawano K., et al. Design of folate-linked liposomal doxorubicin to its antitumor effect in mice / Clin. Cancer Res. 2008. V. 14. No. 24. P. 8161 – 8168.

Lukyanov A. N., Elbayoumi T. A., Chakilam A. R., Torchilin V. P. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody / J. Control. Rel. 2004. V. 100. No. 1. P. 135 – 144.


Полный текст: PDF

Ссылки

  • Ссылки не определены.


** ** ** ** ** **

ISSN: 2073-8099

** ** ** ** ** **

Подписаться на наши издания Вы можете через почтовые каталоги Объединенный каталог «Пресса России» «Урал Пресс», «Ивис»«Прессинформ» и «Профиздат».

 

Наши партнеры:

iIPhEB - Международная выставка и форум по фармацевтике и биотехнологиям, 2–4 апреля 2024

Семинар R&D для R&D, 12–13 апреля 2024