Открытый доступ Открытый доступ  Закрытый доступ Доступ платный или только для подписчиков

Перспективы применения некодирующих РНК в генной терапии (обзор)

Дмитрий Маркович Белоусов, Марина Михайловна Левина, Глеб Алексеевич Старостин

Аннотация


В обзоре освещены возможности применения некодирующих РНК, действующих по механизму РНК-интерференции. Проанализированы особенности строения, способы повышения стабильности малых интерферирующих РНК, а также методы усиления эффективности посттранскрипционного сайленсинга. Описаны некоторые методы химической модификации олигонуклеотидов и системы их доставки в клетку. Рассмотрены новейшие лекарственные препараты на основе некодирующих РНК. Описаны их фармакокинетика и фармакодинамика, ход клинических исследований. Особое внимание уделено биобезопасности данных препаратов.


Ключевые слова


генная терапия, РНКи, микроРНК, миРНК, РНК-интерференция

Ссылки


Watson J. D., CRICK F. H. C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid // Nature. 1953. Т. 171. С. 737.

Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. Т. 75. № 5. С. 843 – 854.

Rupaimoole R., Slack F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases // Nat. Rev. Drug Discov. 2017. Т. 16. С. 203.

Detassis S. et al. microRNAs Make the Call in Cancer Personalized Medicine // Front. Cell Dev. Biol. 2017. Т. 5. С. 86.

Y. Cao R. et al. The Emerging Role of MicroRNA-155 in Cardiovascular Diseases., 2016. 1 – 5 с.

Laffont B., Rayner K. J. MicroRNAs in the Pathobiology and Therapy of Atherosclerosis. // Can. J. Cardiol. 2017. Т. 33. № 3. С. 313 – 324.

Fire A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans // Nature. 1998. Т. 391. С. 806.

Fakhr E., Zare F., Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing // Cancer Gene Ther. 2016. Т. 23. С. 73.

Chiu Y.-L., Rana T. M. siRNA function in RNAi: a chemical modification analysis. // RNA. 2003. Т. 9. № 9. С. 1034 – 1048.

Rooij E. van, Kauppinen S. Development of microRNA therapeutics is coming of age. // EMBO Mol. Med. 2014. Т. 6. № 7. С. 851 – 864.

Quijano E. et al. Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities. // Yale J. Biol. Med. 2017. Т. 90. № 4. С. 583 – 598.

Lennox K. A., Behlke M. A. A direct comparison of anti-microRNA oligonucleotide potency. // Pharm. Res. 2010. Т. 27. № 9. С. 1788 – 1799.

Kucukturkmen B., Bozkir A. Development and characterization of cationic solid lipid nanoparticles for co-delivery of pemetrexed and miR-21 antisense oligonucleotide to glioblastoma cells. // Drug Dev. Ind. Pharm. 2018. Т. 44. № 2. С. 306 – 315.

Ma J. et al. Blocking Stemness and Metastatic Properties of Ovarian Cancer Cells by Targeting p70S6K with Dendrimer Nanovector-Based siRNA Delivery // Mol. Ther. 2018. Т. 26. № 1. С. 70 – 83.

Moore C. B. et al. Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown // Methods Mol. Biol. 2010. Т. 629. С. 141 – 158.

Estiri H. et al. Stable Knockdown of Adenosine Kinase by Lentiviral Anti-ADK miR-shRNAs in Wharton’s Jelly Stem Cells. // Cell J. 2018. Т. 20. № 1. С. 1 – 9.

Chira S. et al. Progresses towards safe and efficient gene therapy vectors. // Oncotarget. 2015. Т. 6. № 31. С. 30675 – 30703.

URL: https://clinicaltrials.gov/show/NCT01829971.

Duell P. B. et al. Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. // J. Clin. Lipidol. 2016. Т. 10. № 4. С. 1011 – 1021.

Akdim F. et al. Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia. // Am. J. Cardiol. 2010. Т. 105. № 10. С. 1413 – 1419.

McGowan M. P. et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. // PLoS One. 2012. Т. 7. № 11. С. e49006.

Thomas G. S. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. // J. Am. Coll. Cardiol. 2013. Т. 62. № 23. С. 2178 – 2184.

Santos R. D. et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. // Arterioscler. Thromb. Vasc. Biol. 2015. Т. 35. № 3. С. 689 – 699.

Jayasinghe R., Craig I. H., Mohan R. K. A. Lipoprotein (A) in clinical practice. // J. Pak. Med. Assoc. 2014. Т. 64. № 4. С. 447 – 450.

URL: http://bit.ly/2MvZ2Lo.

URL: http://www.ema.europa.eu/docs/en GB/document library/Summary of opinion-Initial authorisation/human/002429/WC500136279.pdf.

Jopling C. L. et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA // Science. 2005. Т. 309. № 5740. С. 1577 – 1581.

Ottosen S. et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. // Antimicrob. Agents Chemother. 2015. Т. 59. № 1. С. 599 – 608.

World Health Organization. Guidelines for the Screening, Care and Treatment of Persons with Chronic Hepatitis C Infection Updated Version April 2016 Guidelines. 2016. 71 с.

Janssen H. L. A. et al. Treatment of HCV infection by targeting microRNA. // N. Engl. J. Med. 2013. Т. 368. № 18. С. 1685 – 1694.

Persson R. et al. 1204 Pharmacokinetics of Miravirsen, a MIR-122 Inhibitor, Predict the Prolonged Viral Load Reduction in Treatment Naive Genotype 1 HCV Infected Patients // J. Hepatol. 2012. Т. 56. С. S477.

URL: http://bit.ly/2MwOawR.

URL: http://bit.ly/2P1X5bf.

URL: http://bit.ly/2MxSLz3.

URL: http://bit.ly/2o4ErEE.

URL: https://clinicaltrials.gov/ct2/show/NCT03373786.

URL:http://bit.ly/2o5Doo0.

Vieira M., Saraiva M. J. Transthyretin: a multifaceted protein. // Biomol. Concepts. 2014. Т. 5. № 1. С. 45 – 54.

Rizk M., Tuzmen S. Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran. // Pharmgenomics. Pers. Med. 2017. Т. 10. С. 267 – 278.

Titze-de-Almeida R., David C., Titze-de-Almeida S. S. The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market. // Pharm. Res. 2017. Т. 34. № 7. С. 1339 – 1363.

Coelho T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. // N. Engl. J. Med. 2013. Т. 369. № 9. С. 819 – 829.

Suhr O. B. et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. // Orphanet J. Rare Dis. 2015. Т. 10. С. 109.

URL: http://bit.ly/2VYle3L.

URL: http://bit.ly/2MxSU5z.

Pasi K. J. et al. Targeting of Antithrombin in Hemophilia A or B with RNAi Therapy. // N. Engl. J. Med. 2017. Т. 377. № 9. С. 819 – 828.

Benitez-Del-Castillo J. M. et al. Safety and Efficacy Clinical Trials for SYL1001, a Novel Short Interfering RNA for the Treatment of Dry Eye Disease. // Invest. Ophthalmol. Vis. Sci. 2016. Т. 57. № 14. С. 6447 – 6454.

Шиловский И. П. / Применение интерференции РНК для разработки подходов к антицитокиновой терапии аллергической бронхиальной астмы. Дисс. докт. наук., Институт Иммунологии ФМБА. М., 2017.

Swaminathan G., Navas-Mart?n S., Mart?n-Garc?a J. MicroRNAs and HIV-1 infection: Antiviral activities and beyond // J. Mol. Biol. 2014. Т. 426. № 6. С. 1178 – 1197.

Ishida H. et al. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway // Biochem. Biophys. Res. Commun. 2011. Т. 412. № 1. С. 92 – 97.

Brown D., Rahman M., Nana-Sinkam S. P. Micro¬RNAs in respiratory disease: A clinician’s overview // Ann. Am. Thorac. Soc. 2014. Т. 11. № 8. С. 1277 – 1285.

Zhi F. et al. Characteristic MicroRNA Expression Induced by ?-Opioid Receptor Activation in the Rat Liver Under Prolonged Hypoxia // Cell. Physiol. Biochem. 2017. Т. 44. № 6. С. 2296 – 2309.

Souza M. F. De et al. Circulating mRNAs and ¬miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer // PLoS One. 2017. Т. 12. № 9. С. 1 – 16.


Полный текст: PDF

Ссылки

  • Ссылки не определены.


** ** ** ** ** **

ISSN: 2073-8099

** ** ** ** ** **

 

Подписаться на наши издания Вы можете через почтовые каталоги агентства «Роспечать» и Объединенный каталог «Пресса России», а также на сайтах агентств «УП Урал Пресс», «Информнаука», «Прессинформ» и «Профиздат».