Открытый доступ Открытый доступ  Закрытый доступ Доступ платный или только для подписчиков

Молекулярные мишени старения: обзор и перспективы

Евгения Александровна Ахременко, Александр Игоревич Андреев, Данила Юрьевич Апушкин

Аннотация


Благодаря высокому уровню науки и медицины в XXI в. проведено большое количество исследований, нацеленных на поиск молекулярных мишеней, связанных с механизмами физиологического старения организма. Рассмотрен ряд наиболее перспективных, с точки зрения авторов, биомишеней для скрининга in silico и in vitro. Поскольку имеющиеся на сегодняшний день результаты неоднозначны — они полностью не подтверждают оказание положительного эффекта выделенных специфических мишеней в терапии старения, необходимо провести дополнительные эксперименты уже непосредственно на моделях животных in vivo.

Ключевые слова


старение, белки старения, молекулярные мишени

Ссылки


http://bit.ly/2KrUE0g.

http://bit.ly/2XoIbjW.

Донцов В. И., Крутько В. Н. Сущностные модели старения и продолжительности жизни / Профилактика старения. 1998. № 1. С. 38 – 39.

Скулачёв М., Скулачев В., Фенюк Б. Жизнь без старости. — Litres, 2017. — 332 с.

Погодина А. Б., Газимов А. Х. Основы геронтологии и гериатрии. 2004. — 256 с.

Weindruch R. et al. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake / J. Nutrit. 1986. V. 116. № 4. P. 641 – 654.

Батин М. Лекарства от старости. — М.: Изд-во И. В. Балабанова, 2007. — 64 с.

Hursting S. D. et al. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans / Annu. Rev. Med. 2003. V. 54. № 1. P. 131 – 152.

Selman C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span / Science. 2009. V. 326. № 5949. P. 140 – 144.

Carnevalli L. S. et al. S6K1 plays a critical role in early adipocyte differentiation / Develop. Cell. 2010. V. 18. № 5. P. 763 – 774.

Kaeberlein M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients / Science. 2005. V. 310. № 5751. P. 1193 – 1196.

Jeon S. M. Regulation and function of AMPK in physiology and diseases / Exp. Mol. Med. 2016. V. 48. № 7. P. e245.

Valero T. Editorial (thematic issue: mitochondrial biogenesis: pharmacological approaches) / Curr. Pharm. Des. 2014. V. 20. № 35. P. 5507 – 5509.

Rubinsztein D. C., Mariсo G., Kroemer G. Autophagy and aging / Cell. 2011. V. 146. № 5. P. 682 – 695.

Srinivasan V. et al. Comparing the yeast retrograde response and NF-?B stress responses: implications for aging / Aging Cell. 2010. V. 9. № 6. P. 933 – 941.

McCray B. A., Taylor J. P. The role of autophagy in age-related neurodegeneration / Neurosignals. 2008. V. 16. № 1. P. 75 – 84.

Rubinsztein D. C. The roles of intracellular protein-degradation pathways in neurodegeneration / Nature. 2006. V. 443. № 7113. P. 780.

Oddo S. The ubiquitin-proteasome system in Alzheimer’s disease / J. Cell. Mol. Med. 2008. V. 12. № 2. P. 363 – 373.

Sanchis-Gomar F. et al. Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches / Curr. Pharm. Des. 2014. V. 20. № 35. P. 5619 – 5633.

Dorn G. W., Vega R. B., Kelly D. P. Mitochondrial biogenesis and dynamics in the developing and diseased heart / Genes Develop. 2015. V. 29. № 19. P. 1981 – 1991.

Liang H., Ward W. F. PGC-1?: a key regulator of energy metabolism / Adv. Physiol. Ed. 2006. V. 30. № 4. P. 145 – 151.

Pilegaard H., Saltin B., Neufer P. D. Exercise induces transient transcriptional activation of the PGC-1? gene in human skeletal muscle / J. Physiol. 2003. V. 546. № 3. P. 851 – 858.

Rodgers J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1? and SIRT1 / Nature. 2005. V. 434. № 7029. P. 113.

Cohen H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase / Science. 2004. V. 305. № 5682. P. 390 – 392.

Kauppinen A. et al. Antagonistic crosstalk between NF-?B and SIRT1 in the regulation of inflammation and metabolic disorders / Cell. Signal. 2013. V. 25. № 10. P. 1939 – 1948.

Scheibye-Knudsen M. et al. A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome / Cell Metab. 2014. V. 20. № 5. P. 840 – 855.

Mercken E. M. et al. SRT 2104 extends survival of male mice on a standard diet and preserves bone and muscle mass / Aging Cell. 2014. V. 13. № 5. P. 787 – 796.

Herranz D., Muсoz-Martin M., Caсamero M., Mulero F., Martinez-Pastor B., Fernandez-Capetillo O., Serrano M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer / Nature Commun. 2010. V. 1. P. 3.

Floyd S. et al. The insulin-like growth factor-I– mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth / Mol. Biol. Cell. 2007. V. 18. № 9. P. 3545 – 3555.

Rozengurt E., Soares H. P., Sinnet-Smith J. Suppression of feedback loops mediated by PI3K / mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance / Mol. Cancer Ther. 2014. V. 13. № 11. P. 2477 – 2488.

Jayaram H., Kusumanchi P., Yalowitz J. NMNAT expression and its relation to NAD metabolism / Curr. Med. Chem. 2011. V. 18. № 13. P. 1962 – 1972.

Brazill J. M. et al. NMNAT: It’s an NAD+ synthase… It’sa chaperone... It’sa neuroprotector / Curr. Opin. Genet. Develop. 2017. V. 44. P. 156 – 162.

Gerdts J. et al. SARM1 activation triggers axon degeneration locally via NAD+ destruction / Science. 2015. V. 348. № 6233. P. 453 – 457.

Sasaki Y. et al. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion / Elife. 2016. V. 5. P.e19749.

Yamagishi Y., Tessier-Lavigne M. An atypical SCF-¬like ubiquitin ligase complex promotes Wallerian degeneration through regulation of axonal Nmnat2 / Cell Rep. 2016. V. 17. № 3. P. 774 – 782.

Walker L. C., LeVine H. The cerebral proteopathies / Mol. Neurobiol. 2000. V. 21. № 1 – 2. P. 83 – 95. См. 37

Walker L. C., LeVine H. The cerebral proteopathies: neurodegenerative disorders of protein conformation and assembly / Molecular neurobiology. 2000. V. 21. № 1 – 2. P. 83 – 95.

MacLeod R. et al. The role and therapeutic targeting of ?-, ?-and ?-secretase in Alzheimer’s disease / Future science OA. 2015. V. 1. № 3. https:/doi.org/ 10.4155/fso.15.9.

Kuhn P. H. et al. ADAM10 is the physiologically relevant, constitutive ?-secretase of the amyloid precursor protein in primary neurons / The EMBO journal. 2010. V. 29. № 17. P. 3020 – 3032.

Lichtenthaler S. F. Alpha-secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential / Journal of neurochemistry. 2011. V. 116. № 1. P. 10 – 21.

Vellas B. et al. EHT0202 in Alzheimer’s disease: a 3-month, randomized, placebo-controlled, double-blind study / Current Alzheimer Research. 2011. V. 8. № 2. P. 203 – 212.

URL: http:/clinicaltrials.gov/show/NCT00693004 (дата обращения: 01.11.2018).

Rezai-Zadeh K. et al. Green tea epigallocatechin-¬3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice / Journal of Neuroscience. 2005. V. 25. № 38. P. 8807 – 8814.

Khan T. K. et al. A cellular model of Alzheimer’s disease therapeutic efficacy: PKC activation reverses A?-induced biomarker abnormality on cultured fibroblasts / Neurobiology of disease. 2009. V. 34. № 2. P. 332 – 339.

Ohno M. et al. BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP / PS1 transgenic mice / Neurobiology of disease. 2007. V. 26. № 1. P. 134 – 145.5

Evin G., Hince C. BACE1 as a therapeutic target in Alzheimer’s disease: rationale and current status / Drugs & aging. 2013. V. 30. № 10. P. 755 – 764.

Wong H. K. et al. ? Subunits of voltage-gated sodium channels are novel substrates of b-site amyloid precursor protein-cleaving enzyme (BACE1) and ?-secretase / Journal of Biological Chemistry. 2005. V. 280. № 24. P. 23009 – 23017.

Hu X. et al. Bace1 modulates myelination in the central and peripheral nervous system / Nature neuroscience. 2006. V. 9. № 12. P. 1520.

De Strooper B., Annaert W. Proteolytic processing and cell biological functions of the amyloid precursor protein / J Cell Sci. 2000. V. 113. № 11. P. 1857 – 1870.

Kopan R., Ilagan M. X. G. ?-Secretase: proteasome of the membrane? / Nature reviews Molecular cell biology. 2004. V. 5. № 6. P. 499.

Kimberly W. T. et al. ?-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2 / Proceedings of the National Academy of Sciences. 2003. V. 100. № 11. P. 6382 – 6387.

Lleу A. et al. Notch1 конкурирует с белком-предшественником амилоида для ?-секретазы и понижает уровень экспрессии гена пресенилина-1 / Journal of Biological Chemistry. 2003. Т. 278. № 48. - С. 47370 – 47375.

Androutsellis-Theotokis A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo / Nature. 2006. V. 442. № 7104. P. 823.

Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development / Science. 1999. V. 284. № 5415. P. 770 – 776.

Hopkins C. R. ACS chemical neuroscience molecule spotlight on RG1678. 2011.; 2(6):279 – 80.

Golde T. E. et al. ?-Secretase inhibitors and modulators / Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013. V. 1828. № 12. P. 2898 – 2907.

Doody R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease / New England Journal of Medicine. 2013. V. 369. № 4. P. 341 – 350.

Crump C. J. et al. BMS-708,163 targets presenilin and lacks notch-sparing activity / Biochemistry. 2012. V. 51. № 37. P. 7209 – 7211.

Crump C. J., Johnson D. S., Li Y. M. Development and mechanism of ?-secretase modulators for Alzheimer’s disease / Biochemistry. 2013. V. 52. № 19. P. 3197 – 3216.

Hooper C., Killick R., Lovestone S. The GSK3 hypothesis of Alzheimer’s disease / Journal of neurochemistry. 2008. V. 104. № 6. P. 1433 – 1439.

Phiel C. J. et al. GSK-3? regulates production of Alzheimer’s disease amyloid-? peptides / Nature. 2003. V. 423. № 6938. P. 435.

Ly P. T. T. et al. Inhibition of GSK3?-mediated BACE1 expression reduces Alzheimer-associated phenotypes / The Journal of clinical investigation. 2012. V. 123. № 1.

Vila M., Przedborski S. Neurological diseases: Targeting programmed cell death in neurodegenerative diseases / Nature Reviews Neuroscience. 2003. V. 4. № 5. P. 365.

Jin K. Modern biological theories of aging / Aging and disease. 2010. V. 1. № 2. P. 72.

Song L. et al. NLRP3 inflammasome in neurological diseases, from functions to therapies / Frontiers in cellular neuroscience. 2017. V. 11. P. 63.

Halle A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-? / Nature immunology. 2008. V. 9. № 8. P. 857.

Tong L. et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1? via p38 mitogen-activated protein kinase / Journal of Neuroscience. 2012. V. 32. № 49. P. 17714 – 17724.

Heneka M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP / PS1 mice / Nature. 2013. V. 493. № 7434. P. 674.

Daniels M. J. D. et al. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models / Nature communications. 2016. V. 7. P. 12504.

Yin J. et al. NLRP3 Inflammasome inhibitor ameliorates Amyloid pathology in a mouse model of Alzheimer’s disease / Molecular neurobiology. 2018. V. 55. № 3. P. 1977 – 1987.

Jha S. et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18 / Journal of Neuroscience. 2010. V. 30. № 47. P. 15811 – 15820.

Johann S. et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients / Glia. 2015. V. 63. № 12. P. 2260 – 2273.

Pontillo A., Catamo E., Arosio B., Mari D., Crovella S. NALP1 / NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord. 2012. V. 26 (3). P. 277–281.

Saresella M. et al. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease / Molecular neurodegeneration. 2016. V. 11. № 1. P. 23.

Antonopoulos C. et al. Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling / Journal of Biological Chemistry. 2015. P.jbc.M115.652321.

Richard K. L. et al. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid ?1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease / Journal of Neuroscience. 2008. V. 28. № 22. P. 5784 – 5793.

Hanamsagar R., Hanke M. L., Kielian T. Toll-like receptor (TLR) and inflammasome actions in the central nervous system / Trends in immunology. 2012. V. 33. № 7. P. 333 – 342.

Lim J. E. et al. MyD88 deficiency ameliorates ?-amyloidosis in an animal model of Alzheimer’s disease / The American journal of pathology. 2011. V. 179. № 3. P. 1095 – 1103.

Zhao H. et al. Role of necroptosis in the pathogenesis of solid organ injury / Cell death & disease. 2015. V. 6. № 11. P.e1975.

Yang S. H. et al. Nec-1 alleviates cognitive impairment with reduction of A? and tau abnormalities in APP / PS1 mice / EMBO molecular medicine. 2017. V. 9. № 1. P. 61 – 77.

Qinli Z. et al. Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure / Restorative neurology and neuroscience. 2013. V. 31. № 5. P. 543 – 555.

Wu J. et al. Necrostatin-1 protection of dopaminergic neurons / Neural regeneration research. 2015. V. 10. № 7. P. 1120.

Ito Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS / Science. 2016. V. 353. № 6299. P. 603 – 608.

Re D. B. et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS / Neuron. 2014. V. 81. № 5. P. 1001 – 1008.

Zhu S. et al. Necrostatin-1 ameliorates symptoms in R6 / 2 transgenic mouse model of Huntington’s disease / Cell death & disease. 2011. V. 2. № 1. P.e115.

Kim E. K., Choi E. J. Pathological roles of MAPK signaling pathways in human diseases / Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2010. V. 1802. № 4. P. 396 – 405.

Tabner B. J. et al. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia / Journal of Biological Chemistry. 2005. V. 280. № 43. P. 35789 – 35792.

Zhu X. et al. The role of mitogen-activated protein kinase pathways in Alzheimer’s disease / Neurosignals. 2002. V. 11. № 5. P. 270 – 281.

Peel A. L. et al. Tau phosphorylation in Alzheimer’s disease / Neuromolecular medicine. 2004. V. 5. № 3. P. 205 – 218.

Yarza R. et al. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease / Frontiers in pharmacology. 2016. V. 6. P. 321.

Galvan V. et al. Interaction of ASK1 and the ?-amyloid precursor protein in a stress-signaling complex / Neurobiology of disease. 2007. V. 28. № 1. P. 65 – 75.

Tamagno E. et al. JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1 / Neurobiology of aging. 2009. V. 30. № 10. P. 1563 – 1573.

Klegeris A., Pelech S., Giasson B. I., Maguire J., Zhang H., McGeer E. G., McGeer P. L. ?-Synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol. Aging. 2008. V. 29. P739 – 752.

Karunakaran S. et al. Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice / Journal of Neuroscience. 2008. V. 28. № 47. P. 12500 – 12509.

Jiang H. et al. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis / Human molecular genetics. 2004. V. 13. № 16. P. 1745 – 1754.

Cha G. H. et al. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila / Proceedings of the National Academy of Sciences. 2005. V. 102. № 29. P. 10345 – 10350.

Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing / Nature. 2000. V. 408. № 6809. P. 239.

Wickens A. P. Ageing and the free radical theory / Respiration physiology. 2001. V. 128. № 3. P. 379 – 391.

Rapino C. et al. HIF-1? cytoplasmic accumulation is associated with cell death in old rat cerebral cortex exposed to intermittent hypoxia / Aging cell. 2005. V. 4. № 4. P. 177 – 185.

Saccon R. A. et al. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? / Brain. 2013. V. 136. № 8. P. 2342 – 2358.

Ciancarelli I. et al. Influence of intensive multi¬functional neurorehabilitation on neuronal oxid¬ative damage in patients with Huntington’s di¬sea¬se / Functional neurology. 2015. V. 30. № 1. P. 47

Gamez J. et al. Mutational analysis of the Cu / Zn superoxide dismutase gene in a Catalan ALS population: should all sporadic ALS cases also be screened for SOD1? / Journal of the neurological sciences. 2006. V. 247. № 1. P. 21 – 28.

Cramer T. et al. HIF-1? is essential for myeloid cell-mediated inflammation / Cell. 2003. V. 112. № 5. P. 645 – 657.

Zhang Y. et al. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans / PloS one. 2009. V. 4. № 7. P.e6348.

Hwang A. B. et al. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans / Proceedings of the National Academy of Sciences. 2014. V. 111. № 42. P. E4458 – E4467.

Горбачева О. С., Венедиктова Н. И., Миронова Г. Д. Изучение кинетики и регуляции цикла калия / Патогенез. 2011. Т. 9. No 3. С. 26 – 27.

Миронова Г. Д., Шигаева М. И., Гриценко Е. Н. и др. Особенности работы митохондриального АТФ-зависимого калиевого канала у животных с разной толерантностью к гипоксии до и после курсовой гипоксической тренировки / Бюл. эксперим. биол. и медицины. 2011. Т. 151. No 1. С. 30 – 36.

Миронова Г. Д. Использование модуляторов ионных каналов как возможный путь лечения сердечно-сосудистых заболеваний, окислительного стресса и нейродегенеративных нарушений / Патогенез. 2011. Т. 9. No 3. С. 47

Новиков В. Е., Левченкова О. С., Пожилова Е. В. Митохондриальная синтаза оксида азота и ее роль в механизмах адаптации клетки к гипоксии / Обзоры по клинической фармакологии и лекарственной терапии. 2016. Т. 14. № 2.

Новиков В. Е., Левченкова О. С. Митохондриальные мишени для фармакологической регуляции адаптации клетки к воздействию гипоксии / Обзоры по клинической фармакологии и лекарственной терапии. 2014. Т. 12. № 2.

Перепеч Н. Б. Метаболические миокардиальные цитопротекторы в терапии стабильной ишемической болезни сердца: доказательства эффективности и рекомендации по применению / Медицинский совет. 2017. № 12.

Schriner S. E., Linford N. J., Martin G. M., Treu¬ting P., Ogburn C. E., Emond M., Cosk un P. E., Ladiges W., Wolf N., Van Remmen H., Walla¬ce D. C., Rabinovitch P. S. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005. V. 308 (5730). P. 1909 – 1911.

Demyanenko I. A. et al. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice / Aging (Albany NY). 2015. V. 7. № 7. P. 475.

Silachev D. N. et al. Neuroprotective effects of mitochondria-targeted plastoquinone and thymo¬quinone in a rat model of brain ischemia/ reperfusion injury / Molecules. 2015. V. 20. № 8. P. 14487 – 14503.

Simi A., Tsakiri N., Wang P., Roth N. J. Interleukin-1 and inflammatory neuro-degene¬ration / Biochemical Society Transactions. 2007. V. 35 (5). P. 1122 – 1126.

Cartier L. et al. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases / Brain Research Reviews. 2005. V. 48. № 1. P. 16 – 42.

Du L. X. et al. IL-33/ST2 pathway as a rational therapeutic target for CNS diseases / Neuro¬science. 2017, https:/doi.org/10.1016/j.neuroscien¬ce.2017.11.028.

Akiyama H., Webster S., Wegrzyniak B., Wenk G., Wyss-Coray T. / Inflammation and Alzheimer’s disease. Neurobiol. Aging. 2000. V. 21. № 3. P. 383 – 421.

Neymotin A. et al. Lenalidomide (Revlimid®) administration at symptom onset is neuro¬protective in a mouse model of amyotrophic lateral sclerosis / Experimental neurology. 2009. V. 220. № 1. P. 191 – 197.

McGeer P. L., McGeer E. G. Inflammatory processes in amyotrophic lateral sclerosis / Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 2002. V. 26. № 4. P. 459 – 470.

Hirsch E. C., Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? / The Lancet Neurology. 2009. V. 8. № 4. P. 382 – 397.

Hirsch E. C., Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? / The Lancet Neurology. 2009. V. 8. № 4. P. 382 – 397.

Salmina A. B. et al. Inflammation and brain aging / Вестник РАН. 2015. № 1. С. 17 – 25.

Fang P., Schachner M., Shen Y. Q. HMGB1 in development and diseases of the central nervous system / Molecular neurobiology. 2012. V. 45. № 3. P. 499 – 506.

Fossati S., Chiarugi A. Relevance of High-¬Mobility Group Protein Box 1 to Neurode-gene¬ration / International review of neurobiology. 2007. V. 82. P. 137 – 148.

Sims G. P., Rowe D. C., Rietdijk S. T., Herbst R., Coyle A. J. (2010). «HMGB1 and RAGE in inflammation and cancer». Annual Review of Immunology. 28: 36788. doi:10.1146/annurev. immunol.021908.132603. PMID 20192808.

Zigova T., Pencea V., Wiegand S. J., Luskin M. B. «Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb». Molecular and Cellular Neurosciences. 1998. V. 11(4). P. 23445.

Benraiss A. et al. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain / Journal of Neuroscience. 2001. V. 21. № 17. P. 6718 – 6731.

Pencea V. et al. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypo¬thalamus / Journal of Neuroscience. 2001. V. 21. № 17. P. 6706 – 6717.

Bartkowska K. et al. Trk signaling regulates neural precursor cell proliferation and diffe¬rentiation during cortical development / Devel¬opment. 2007. V. 134. № 24. P. 4369 – 4380.

Patapoutian A., Reichardt L. F. Trk receptors: mediators of neurotrophin action / Current opinion in neurobiology. 2001. V. 11. № 3. P. 272 – 280.

Mizuno M. et al. Involvement of BDNF receptor TrkB in spatial memory formation / Learning & memory. 2003. V. 10. № 2. P. 108 – 115.

Yoshii A., Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation / Nature neuroscience. 2007. V. 10. № 6. P. 702.

Penzes P. et al. The neuronal Rho-GEF kalirin-7 interacts with PDZ domaincontaining proteins and regulates dendritic morphogenesis / Neuron. 2001. V. 29. № 1. P. 229 – 242.

Caldeira M. V. et al. Brain-derived Neurotrophic Factor Regulates the Expression and Synaptic Delivery of ?-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor Subunits in Hippocampal Neurons / Journal of Biological Chemistry. 2007. V. 282. № 17. P. 12619 – 12628.

Wu K. et al. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms / Molecular brain research. 2004. V. 130. № 1 – 2. P. 178 – 186.

Tapia-Arancibia L. et al. New insights into brain BDNF function in normal aging and Alzheimer disease / Brain research reviews. 2008. V. 59. № 1. P. 201 – 220.

Mattson M. P. Glutamate and neurotrophic factors in neuronal plasticity and disease / Annals of the New York Academy of Sciences. 2008. V. 1144. № 1. P. 97 – 112.

Zuccato C., Cattaneo E. Brain-derived neurotro¬phic factor in neurodegenerative diseases / Nature Reviews Neurology. 2009. V. 5. № 6. P. 311.

Zajac M. S. et al. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice / Hippocampus. 2010. V. 20. № 5. P. 621 – 636.

Maina G. et al. Serum levels of brain-derived neurotrophic factor in drug-naive obsessivecompulsive patients: a casecontrol study / Journal of affective disorders. 2010. V. 122. № 1 – 2. P. 174 – 178.

Arancio O., Chao M. V. Neurotrophins, synaptic plasticity and dementia / Current opinion in neurobiology. 2007. V. 17. № 3. P. 325 – 330.

Cheung Z. H., Ip NY Cdk5: Mediator of neuronal death and survival. Neurosci Lett. 2004. V. 361. P. 4751.

Cheung Z. H., Fu A. K., Ip N. Y. Synaptic roles of Cdk5: Implications in higher cognitive functions and neurodegenerative diseases. Neuron. 2006. V. 50. P. 1318

Dhavan R., Tsai L. H. A decade of CDK5. Nat Rev Mol Cell Biol. 2001. V. 2. P. 749759

Cheung Z. H. et al. Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons / PLoS biology. 2007. V. 5. № 4. P. e63.

Mushtaq G. et al. Neuroprotective mechanisms mediated by CDK5 inhibition / Current pharmaceutical design. 2016. V. 22. № 5. P. 527 – 534.

Hara K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action / Cell. 2002. V. 110. № 2. P. 177 – 189.

Oshiro N. et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function / Genes to Cells. 2004. V. 9. № 4. P. 359 – 366.

Feng D. et al. Discovery of MK-8722: A systemic, direct pan-activator of AMP-activated protein kinase / ACS medicinal chemistry letters. 2017. V. 9. № 1. P. 39 – 44.

Alca?n F. J., Villalba J. M. Sirtuin activators / Expert opinion on therapeutic patents. 2009. V. 19. № 4. P. 403 – 414.

Shin S. Y. et al. SIRT1 activation by methylene blue, a repurposed drug, leads to AMPK-mediated inhibition of steatosis and steatohepatitis / European journal of pharmacology. 2014. V. 727. P. 115 – 124.

Liu B. et al. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria / Cell metabolism. 2012. V. 16. № 6. P. 738 – 750.

Mulvihill M. J. et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor / Future medicinal chemistry. 2009. V. 1. № 6. P. 1153 – 1171.

Baumann P. et al. Myeloma cell growth inhibition is augmented by synchronous inhibition of the insulin-like growth factor-1 receptor by NVP-¬AEW541 and inhibition of mammalian target of rapamycin by Rad001 / Anti-cancer drugs. 2009. V. 20. № 4. P. 259 – 266.

Sabbatini P. et al. Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin-like growth factor-I receptor tyrosine kinase / Clinical cancer research. 2009. V. 15. № 9. P. 3058 – 3067.

Zhang L. N. et al. Novel small-molecule PGC-1? transcriptional regulator with beneficial effects on diabetic db / db mice / Diabetes. 2013. V. 62. № 4. P. 1297 – 1307.

Grimshaw K. M. et al. AT7867 is a potent and oral inhibitor of AKT and p70 S6 kinase that induces pharmacodynamic changes and inhibits human tumor xenograft growth / Molecular cancer therapeutics. 2010. P. 1535 – 7163. MCT-09-0986.

Pearce L. R. et al. Characterization of PF-¬4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1) / Biochemical Journal. 2010. V. 431. № 2. P. 245 – 255.

May P. C. et al. The potent BACE1 inhibitor LY2886721 elicits robust central A? pharmacodynamic responses in mice, dogs, and humans / Journal of Neuroscience. 2015. V. 35. № 3. P. 1199 – 1210.

May P. C. et al. Robust central reduction of amyloid-? in humans with an orally available, non-peptidic ?-secretase inhibitor / Journal of Neuroscience. 2011. V. 31. № 46. P. 16507 – 16516.

Thaisrivongs D. A. et al. Synthesis of Verubecestat, a BACE1 Inhibitor for the Treatment of Alzheimer’s Disease / Organic letters. 2016. V. 18. № 22. P. 5780 – 5783.

Tolcher A. W. et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors / Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2012. V. 30. № 19. P. 2348 – 2353.

Best J. D. et al. Quantitative measurement of changes in amyloid-? (40) in the rat brain and cerebrospinal fluid following treatment with the ?-secretase inhibitor LY-411575 [N2-[(2S)-2-(3,5-di¬fluorophenyl)- 2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo6,7-dihydro-5H-dibenzo [b, d] azepin- 7-yl]-L-alaninamide] / Journal of Pharmacology and Experimental Therapeutics. 2005. V. 313. № 2. P. 902 – 908.

Van Hout G. P. J. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction / European heart journal. 2016. V. 38. № 11. P. 828 – 836.

Boxer M. B. et al. A small molecule inhibitor of Caspase 1 In book: Probe Reports from the NIH Molecular Libraries Program, Publisher: National Center for Biotechnology Information (US). 2011.

Ryt?maa M., Martins L. M., Downward J. Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis / Current Biology. 1999. V. 9. № 18. P. 1043-S2.

Jin G., Jin X., Zhou S. Sparstolonin B selectively suppresses toll-like receptor-2 and-4 to alleviate neuropathic pain / Molecular medicine reports. 2018. V. 17. № 1. P. 1247 – 1252.

Dong C. et al. Inhibition of Toll-like receptor-mediated inflammation in vitro and in vivo by a novel benzoxaborole / Journal of Pharmacology and Experimental Therapeutics. 2013. V. 344. № 2. P. 436 – 446.

He W. T. et al. Short-term MyD88 inhibition ameliorates cardiac graft rejection and promotes donor-specific hyporesponsiveness of skin grafts in mice / Transplant International. 2016. V. 29. № 8. P. 941 – 952.

Olson M. A. et al. Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen / Scientific reports. 2015. V. 5. P. 14246.

Degterev A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins / Nature chemical biology. 2008. V. 4. № 5. P. 313.

Bin L. U. et al. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1 / RIP3 necrosome formation / Acta Pharmacologica Sinica. 2017. V. 38. № 11. P. 1543.

Bennett B. L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase / Proceedings of the National Academy of Sciences. 2001. V. 98. № 24. P. 13681 – 13686.

Zhang T. et al. Discovery of potent and selective covalent inhibitors of JNK / Chemistry & biology. 2012. V. 19. № 1. P. 140 – 154.

Fijen J. W. et al. Suppression of the clinical and cytokine response to endotoxin by RWJ-67657, a p38 mitogen-activated protein-kinase inhibitor, in healthy human volunteers / Clinical & Experimental Immunology. 2001. V. 124. № 1. P. 16 – 20.

Lin J. H. et al. Design of a phase 2 clinical trial of an ASK1 inhibitor, GS-4997, in patients with diabetic kidney disease / Nephron. 2015. V. 129. № 1. P. 29 – 33.

Volynets G. P. et al. Identification of 3 H-Naphtho [1,2,3-de] quinoline-2,7-diones as inhibitors of Apoptosis Signal-Regulating Kinase 1 (ASK1) / Journal of medicinal chemistry. 2011. V. 54. № 8. P. 2680 – 2686.

GroSch S. et al. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib / The FASEB journal. 2001. V. 15. № 14. P. 2742 – 2744.

Weber A. et al. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition / Journal of medicinal chemistry. 2004. V. 47. № 3. P. 550 – 557.

Couvreur N. et al. The Ceiling Effect of Pharmacological Postconditioning with the Phytoestrogen Genistein Is Reversed by the GSK3? Inhibitor SB 216763 [3-(2, 4-Dichlorophenyl)-4 (1-methyl- 1H-in¬dol-3-yl)-1H-pyrrole-2,5-dione] through Mitochondrial ATP-Dependent Potassium Channel Opening / Journal of Pharmacology and Experimental Therapeutics. 2009. V. 329. № 3. P. 1134 – 1141.

Naujok O. et al. Cytotoxicity and activation of the Wnt / beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors / BMC research notes. 2014. V. 7. № 1. P. 273.

Parry D. et al. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor / Molecular cancer therapeutics. 2010. P. 1535 – 7163. MCT-10 – 0324.

Ehrhardt C. et al. The NF-? B inhibitor SC 75741 efficiently blocks influenza virus propagation and confers a high barrier for development of viral resistance / Cellular microbiology. 2013. V. 15. № 7. P. 1198 – 1211.

Barone T. et al. ET-006. Curaxin (CBL0137) significantly increases survival in orthotopic models of glioblastoma multiforme alone and in combination with temozolomide / Neuro-oncology. 2013. V. 15. № suppl 3. P. iii37 – iii61.


Полный текст: PDF

Ссылки

  • Ссылки не определены.


** ** ** ** ** **

ISSN: 2073-8099

** ** ** ** ** **

 

Подписаться на наши издания Вы можете через почтовые каталоги агентства «Роспечать» и Объединенный каталог «Пресса России», а также на сайтах агентств «УП Урал Пресс», «Информнаука», «Прессинформ» и «Профиздат».