Открытый доступ Открытый доступ  Закрытый доступ Доступ платный или только для подписчиков

Показатели качества терапевтических белков как часть подхода Quality by design (QbD)

Владимир Юрьевич Арпиульев, Екатерина Валерьевна Зубарева, Рахим Рахманкулыевич Шукуров

Аннотация


DOI: 10.30906/2073-8099-2020-12-3-29-41

В связи с появлением на мировом рынке множества препаратов на основе рекомбинатных терапевтических белков остро встает проблема внедрения научных подходов и концепций для обеспечения качества продукта на всех этапах разработки. Биопрепараты имеют сложную структуру, и риск появления нежелательных реакций на организм человека становится довольно высоким. Поэтому установление критических параметров качества (CQA) является одним из первых этапов процесса Quality by design (QbD). Целью данной статьи является проведение обзора литературы, касающегося оценки влияния показателей качества рекомбинантных терапевтических белков на безопасность и эффективность препарата. Данная статья будет полезна специалистам, работающим в области разработки и контроля качества биофармацевтических препаратов.

Ключевые слова


критический параметр качества, моноклональное антитело, агрегаты, фрагменты, гликозилирование, гликирование

Ссылки


Alt N., Zhang T. Y., Motchnik P., et al. Determination of critical quality attributes for monoclonal antibodies using quality by design principles / Biologicals. 2016. V. 44. № 5. P. 291 – 305. doi: 10.1016/j.biologicals.2016.06.005.

Anthony R. M., Nimmerjahn F., Ashline D. J., et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc / Science. 2008. V. 320. P. 373 – 376. doi: 10.1126/science.1154315.

Boyd P. N., Lines A. C., Patel A. K. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of CAMPATH-1H / Mol Immunol. 1995. V. 32. № 17 – 18. P. 1311 – 1318. doi: 10.1016/0161-5890(95)00118-2.

Buttenschoen K., Radermacher P., Bracht H. Endotoxin elimination in sepsis: physiology and therapeutic application / Langenbecks Arch Surg. 2010. V. 395. № 6. P. 597 – 605. doi: 10.1007/s00423-010- 0658-6.

Cacia J., Keck R., Presta L. G., Frenz J. Isomerization of an aspartic acid residue in the complementarity determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity / Biochemistry. 1996. V. 35. № 6. P. 1897 – 1903. doi: 10.1021/bi951526c.

Chen X., Liu Y. D., Flynn G. C. The effect of Fc glycan forms on human IgG2 antibody clearance in humans / Glycobiology. 2009. V. 19. № 3. P. 240 – 249. doi: 10.1093/glycob/cwn120.

Chen W., Ede N. J., Jackson D. C., et al. CTL recognition of an altered peptide associated with asparagine bond rearrangement. Implications for immunity and vaccine design / J Immunol. 1996. V. 157. № 3. P. 1000 – 1005.

Cleland J. L., Powell M. F., Shire S. J. The development of stable protein formulations: a close look at protein aggregation, deamidation and oxidation / Crit Rev Ther Drug Carrier Syst. 1993. V. 10. № 4. P. 307 – 377.

CMC Biotech Working Group. A-MAb: A Case Study in Bioprocess Development. Emeryville, CA: CASSS; 2009.

den Engelsman J., Garidel P., Smulders R., et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development / Pharm Res. 2011. V. 28. № 4. P. 920 – 933. doi: 10.1007/s11095-010-0297-1.

Eon-Duval A., Broly H., Gleixner R. Quality Attributes of Recombinant Therapeutic Proteins: An Assessment of Impact on Safety and Efficacy as Part of a Quality by Design Development Approach / Biotechnol Prog. 2012. V. 28. № 3. P. 608 – 622. doi: 10.1002/btpr.1548.

Ferrara C., Grau S., J?ger C., et al. Unique carbohydrate – carbohydrate interactions are required for high-affinity binding between FcgammaRIII and antibodies lacking core fucose / Proc Natl Acad Sci USA. 2011. V. 108. № 31. P. 12669 – 12674. doi: 10.1073/pnas.1108455108.

Gribben J. G., Devereux S., Thomas N. S., et al. Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF / Lancet. 1990. V. 335. № 8687. P. 434 – 437. doi: 10.1016/ 0140-6736(90)90665-r.

Hermeling S., Schellekens H., Maas C., et al. Antibody response to aggregated human interferon alpha2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation / J Pharm Sci. 2006. V. 95. P. 1084 – 1096. doi: 10.1002/jps.20599.

Hodoniczky J., Zheng Y. Z., James D. C. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro / Biotechnol Prog. 2005. V. 21. № 6. P. 1644 – 1652. doi: 10.1021/bp050228w.

Hsu Y. R., Narhi L. O., Spahr C., et al. In vitro methionine oxidation of Escherichia coli-derived human stem cell factor: effects on the molecular structure, biological activity and dimerization / Protein Sci. 1996. V. 5. № 6. P. 1165 – 1173. doi: 10.1002/ pro.5560050619.

Huang L., Lu J., Wroblewski V. J., et al. In vivo de¬amidation characterization of monoclonal antibody by LC/MS/MS / Anal Chem. 2005. V. 77. № 5. P. 1432 – 1439. doi: 10.1021/ac0494174.

International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Draft Consensus Guideline. ICH Harmonised Tripartite Guideline: Development and Manufacture of Drug Substances (Chemical Entities and Biotechnological / Biological Entities). ICH; 2011. Available at: http://www.ich.org.

International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline: Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin, Q5A(R1). ICH; 1999. Available at: http://www.ich.org.

International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH harmonized tripartite guideline, pharmaceutical development. Q8 R2. August 2009.

Jefferis R., Lund J. Interaction sites on human IgG-Fc for FcgammaR. Current models / Immunol Lett. 2002. V. 82. № 1 – 2. P. 57 – 65. doi: 10.1016/ s0165-2478(02)00019-6.

Lakbub J. C., Shipman J. T., Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins / Analytical and Bioanalytical chemistry. 2017. V. 410. № 10. P. 2467 – 2484. doi: 10.1007/s00216- 017-0772-1.

Kanda Y., Yamada T., Mori K., et al. Comparison of biological activity among non-fucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid and complex types / Glycobiology. 2006. V. 17.№ 1. P. 104 – 118. doi: 10.1093/glycob/cwl057.

Kaneko Y., Nimmerjahn F., Ravetch J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation / Science. 2006. V. 313. № 5787. P. 670 – 673. doi: 10.1126/science.1129594.

Karlberg M., von Stosch M., Glassey J. Exploiting mAb structure characteristics for a directed QbD implementation in early process development / Critical reviews in biotechnology. 2018. V. 38. № 6. P. 957 – 970. doi: 10.1080/07388551.2017.1421899.

Kroon D. J., Baldwin-Ferro A., Lalan P. Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping / Pharm Res. 1992. V. 9.№ 11. P. 1386 – 1393. doi: 10.1023/ a:1015894409623.

Liu H., Gaza-Bulseco G., Faldu D., et al. Heterogeneity of monoclonal antibodies / J Pharm Sci. 2008. V. 97. № 7. P. 2426 2447. doi: 10.1002/jps.21180.

Lu H. S., Fausset P. R., Narhi L. O., et al. Chemical modification and site directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity / Arch Biochem Biophys. 1999. V. 362. № 1. P. 1 – 11. doi: 10.1006/abbi.1998.1022.

Lu J., Ellsworth J. L., Hamacher N., et al. Crystal structure of Fcg receptor I and its implication in high affinity g-immunoglobulin binding / J. Biol. Chem. 2011. V. 286. № 47. P. 40608 – 40613. doi: 10.1074/jbc. M111.257550.

Maas C., Hermeling S., Bouma B., et al. A role for protein misfolding in immunogenicity of biopharmaceuticals / J Biol Chem. 2007. V. 282. № 4. P. 2229 – 2236. doi: 10.1074/jbc. M605984200.

Kiyoshi M., Caaveiro J. M. M., Kawai T., et al. Structural basis for binding of human IgG1 to its high-affinity human receptor FcgRI / Nature communications. 2015. V. 6. 6866. doi: 10.1038/ ncomms7866.

Millward T. A., Heitzmann M., Bill K., et al. Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice / Biologicals. 2008. V. 36. № 1. P. 41 – 47. doi: 10.1016/j.biologicals.2007.05.003.

Nimmerjahn F., Ravetch J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding / Science. 2005. V. 310. V. 5753. P. 1510 – 1512. doi: 10.1126/science.1118948.

O’Flaherty R., Trbojevi?-Akma?i? I., Greville G., et al. The Sweet Spot for Biologics: Recent Advances in Characterization of Biotherapeutic Glycoproteins / Expert Review of Proteomics. 2017. V. 15. № 1. P. 13 – 29. doi: 10.1080/14789450.2018.1404907.

Page M., Ling C., Dilger P., et al. Fragmentation of therapeutic human immunoglobulin preparations / Vox Sang. 1995. V. 69. № 3. P. 183 – 194. doi: 10.1111/j.1423-0410.1995.tb02592.x.

Peipp M., van Bueren L. J. J., Schneider-Merck T., et al. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells / Blood. 2008. V. 112. № 6. P. 2390 – 2399. doi: 10.1182/blood-2008-03-144600.

Presta L. G. Engineering of therapeutic antibodies to minimize immunogenicity and optimise function / Adv Drug Delivery Rev. 2006. V. 58. № 5 – 6. P. 640 – 656. doi: 10.1016/j.addr.2006.01.026.

Radaev S., Sun P. D. Recognition of IgG by Fcgamma receptor: The role of Fc glycosylation and the binding of peptide inhibitors / J Biol Chem. 2001. V. 276. № 19. P. 16478 – 16483. doi: 10.1074/jbc. M100351200.

Raju T. S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs / Curr Opin Immunol. 2008. V. 20. № 4. P. 471 – 478. doi: 10.1016/ j.coi.2008.06.007.

Rathore A. S. Quality by design (QbD) — Based Process Development for Purification of a Biotherapeutic / Trends in Biotechnology. 2016. V. 34. № 5. P. 358 – 370. doi: 10.1016/j.tibtech.2016.01.003.

Rathore A. S., Kumar D., Kateja N. Role of raw materials in biopharmaceutical manufacturing: risk analysis and fingerprinting / Current opinion in Biotechnology. 2018. V. 53. P. 99 – 105. doi: 10.1016/ j.copbio.2017.12.022.

Reusch D., Tejada M. L. Fc glycans of therapeutic antibodies as critical quality attributes (CQAs) / Glycobiology. 2015. V. 25. № 12. P. 1325 – 1334. doi: 10.1093/glycob/cwv065.

Runkel L., Meier W., Pepinsky B. R. Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-b (IFN-b) / Pharm Res. 1998. V. 15. № 4. P. 641 – 649. doi: 10.1023/a:1011974512425.

Schenerman M. A., Axley M. J., Oliver C. N., et al. Using a risk assessment process to determine criticality of product quality attributes. In: Rathore A. S., Mhatre R., editors / Quality by Design for Biopharmaceuticals. New York: Wiley. 2009. P. 53 – 83.

Schenerman M. A., Sunday B. R., Kozlowski S., et al. CMC strategy forum report / BioProcess Int. 2004. V. 2. P. 42 – 52.

Sharma B., Bader F., Templeman T., et al. Technical investigations into the cause of the increased incidence of antibody-mediated pure red cell aplasia associated with Eprex / Eur. J. Hospital Pharm. 2004. V. 5. P. 86 – 91.

Shields R. L., Lai J., Keck R., et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FccRIII and antibody-dependent cellular toxicity / J Biol Chem. 2002. V. 277. № 30. P. 26733 – 26740. doi: 10.1074/jbc.M202069200.

Shinkawa T., Nakamura K., Yamane N., et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity / J Biol Chem. 2003. V. 278. № 5. P. 3466 – 3473. doi: 10.1074/jbc.M210665200.

van Beers M. M. C., Sauerborn M., Gilli F., et al. Oxidised and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice / Pharm Res. 2011. V. 28. № 10. P. 2393 – 2402. doi: 10.1007/s11095-011-0451-4.

Vlasak J., Bussat M. C., Wang S., et al. Identification and characterisation of asparagine deamidation in the light chain CDR1 of a humanised IgG1 antibody / Anal Biochem. 2009. V. 392. № 2. P. 145 – 154. doi: 10.1016/j.ab.2009.05.043.

Vlasak J., Ionescu R. Fragmentation of monoclonal antibodies / MAbs. 2011. V. 3. № 3. P. 253 – 263. doi: 10.4161/mabs.3.3.15608.

Wang W., Vlasak J., Li Y., et al. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies / Mol Immunol. 2011. V. 48. № 6 – 7. P. 860 – 866. doi: 10.1016/j.molimm.2010. 12.009.

Wierenga D. E., Cogan J., Petricciani J. C. Administration of tumor cell chromatin to immunosuppressed and nonimmunosuppressed non-human primates / Biologicals. 1995. V. 23.№ 3. P. 221 – 224. doi: 10.1006/biol.1995.0036.

World Health Organization (WHO). Requirements for the use of animal cells as in vitro substrates for the production of biologicals. In: WHO Expert Committee on Biological Standardization, 47th Report (WHO Technical Report Series, No. 878, annex 1). Geneva: World Health Organization; 1998.

Zhou Q., Shankara S., Roy A., et al. Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function / Biotechnol Bioeng. 2008. V. 99. № 3. P. 652 – 665. doi: 10.1002/ bit.21598.


Полный текст: PDF

Ссылки

  • Ссылки не определены.


** ** ** ** ** **

ISSN: 2073-8099

** ** ** ** ** **

 

Подписаться на наши издания Вы можете через почтовые каталоги агентства «Роспечать» и Объединенный каталог «Пресса России», а также на сайтах агентств «УП Урал Пресс», «Информнаука», «Прессинформ» и «Профиздат».