Открытый доступ Открытый доступ  Закрытый доступ Доступ платный или только для подписчиков

Изучение и математическое описание кинетики высвобождения доксорубицина из PLGA наночастиц in vitro

Tatyana Sergeevna Kovshova, Nadezhda Sergeevna Osipova, Alexey Vladimirovich Belov, Elena Vladimirovna Shipulo, Yulia Valeryevna Ermolenko, Yulia Aleksandrovna Malinovskaya, Olga Olegovna Maksimenko, Vadim Yurievich Balabanyan, Svetlana Emmanuilovna Gelperina

Аннотация


DOI: 10.30906/2073-8099-2020-12-4-27-37

Профиль высвобождения активного ингредиента из наночастиц является одним из важнейших параметров наносомальной лекарственной формы. Разработаны и оптимизированы методы изучения кинетики высвобождения доксорубицина из наночастиц PLGA в модельные среды in vitro. Оптимальным методом отделения наночастиц является ультрацентрифугирование, а наиболее подходящей модельной средой — 1 % водный раствор полоксамера 188. Профиль высвобождения имеет выраженный двухфазный характер и подчиняется закону диффузии Фика. Изучение кинетики высвобождения доксорубицина в плазме крови ограничено низкой стабильностью в условиях эксперимента (4 ч при 37 °C).


Ключевые слова


наночастицы, PLGA, доксорубицин, профиль высвобождения in vitro

Ссылки


Barenholz Y. Relevancy of drug loading to liposomal formulation therapeutic efficacy / J. Liposome Res. 2003. V. 13. No. 1. P. 1 – 8.

Cardot J. M. et al. In vitro – in vivo correlation: importance of dissolution in IVIVC / Dissolut. Technol. 2007. V. 14. No. 1. P. 15.

Gray V. et al. In vitro release test methods for drug formulations for parenteral applications / Dissolut. Technol. 2018. V. 25. No. 4. P. 8 – 13.

Larsen C. et al. Role of in vitro release models in formulation development and quality control of parenteral depots / Expert. Opin. Drug Deliv. 2009. V. 6. No. 12. P. 1283 – 1295.

Nothnagel L., Wacker M. G. How to measure release from nanosized carriers? / Eur. J. Pharm. Sci. 2018. V. 120. P. 199 – 211.

Rezvantalab S. et al. PLGA-Based nanoparticles in cancer treatment / Front. Pharmacol. 2018. V. 9. P. 1260.

Maksimenko O. et al. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development / Int. J. Pharm. 2019. V. 572. P. 118733.

Malinovskaya Y. et al. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells / Int. J. Pharm. 2017. V. 524. No. 1 – 2. P. 77 – 90.

F?l?p Z., Gref R., Loftsson T. A permeation method for detection of self-aggregation of doxorubicin in aqueous environment / Int. J. Pharm. 2013. V. 454. No. 1. P. 559 – 561.

Tewes F. et al. Comparative study of doxorubicin-loaded poly (lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods / Eur. J. Pharm. Biopharm. 2007. V. 66. No. 3. P. 488 – 492.

Mittal G. et al. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo / J. Control. Release. 2007. V. 119. No. 1. P. 77 – 85.

Zheng Y. et al. Preparation, characterization, and drug release in vitro of chitosan-glycyrrhetic acid nanoparticles / J. Pharm. Sci. 2006. V. 95. No. 1. P. 181 – 191.

Magalhaes N. S. S. et al. An in vitro release kinetic examination and comparative evaluation between submicron emulsion and polylactic acid nanocapsules of clofibride / J. Microencapsul. 1995. V. 12. No. 2. P. 195 – 205.

Magenheim B., Levy M. Y., Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers-ultrafiltration technique at low pressure / Int. J. Pharm. 1993. V. 94. No. 1 – 3. P. 115 – 123.

Wallace S. J. et al. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology / Drug Deliv. Transl. Res. 2012. V. 2. No. 4. P. 284 – 292.

Chidambaram N., Burgess D. J. A novel in vitro release method for submicron-sized dispersed systems / AAPS Pharm. Sci. 1999. V. 1. No. 3. P. 32 – 40.

Bohrey S., Chourasiya V., Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study / Nano Converg. 2016. V. 3. No. 1. P. 3.

Dugyala V. R. et al. Role of electrostatic interactions in the adsorption kinetics of nanoparticles at fluid–fluid interfaces / Phys. Chem. Chem. Phys. 2016. V. 18. No. 7. P. 5499 – 5508.

Santander-Ortega M. J. et al. Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms / J. Colloid. Interface Sci. 2006. V. 302. No. 2. P. 522 – 529.

Lucero-Acu?a A. et al. Mathematical modeling and parametrical analysis of the temperature dependency of control drug release from biodegradable nanoparticles / RSC Adv. 2019. V. 9. No. 16. Р. 8728 – 8739.

Zambito Y., Pedreschi E., Di Colo G. Is dialysis a reliable method for studying drug release from nanoparticulate systems? — A case study / Int. J. Pharm. 2012. V. 434. No. 1 – 2. P. 28 – 34.

Hines D. J., Kaplan D. L. Poly (lactic-co-glycolic) acid — controlled-release systems: experimental and modeling insights / Crit. Rev. Ther. Drug Carrier Syst. 2013. V. 30. No. 3. P. 257 – 276.

Dash S. et al. Kinetic modeling on drug release from controlled drug delivery systems / Acta Pol. Pharm. 2010. V. 67. No. 3. P. 217 – 223.

Costa P., Lobo J. M. S. Modeling and comparison of dissolution profiles / Eur. J. Pharm. Sci. 2001. V. 13. No. 2. P. 123 – 133.

Siepmann J., Peppas N. A. Higuchi equation: derivation, applications, use and misuse / Int. J. Pharm. 2011. V. 418. No. 1. P. 6 – 12.

Alway B., Sangchantra R., Stewart P. J. Modelling the dissolution of diazepam in lactose interactive mixtures / Int. J. Pharm. 1996. V. 130. No. 2. P. 213 – 224.

Korsmeyer R. W. et al. Mechanisms of solute release from porous hydrophilic polymers / Int. J. Pharm. 1983. V. 15. No. 1. P. 25 – 35.

Ritger P. L., Peppas N. A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices / J. Control Release. 1987. V. 5. No. 1. P. 37 – 42.

FDA U. S. Drug Products, Including Biological Products, That Contain Nanomaterials — Guidance for Industry. — Silver Spring, MD: US Department of Health and Human Services. 2017.

EMA. Reflection Paper on the Data Requirements for Intravenous Liposomal Products Developed with Reference to an Innovator Liposomal Product. 2013.

Alhareth K. et al. HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly (alkylcyanoacrylate) nanoparticles / J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012. V. 887. P. 128 – 132.

Druckmann S., Gabizon A., Barenholz Y. Separation of liposome-associated doxorubicin from non-liposome-associated doxorubicin in human plasma: implications for pharmacokinetic studies / Biochim. Biophys. Acta Biomembr. 1989. V. 980. No. 3. P. 381 – 384.

Mayer L. D., Onge G. S. Determination of free and liposome-associated doxorubicin and vincristine levels in plasma under equilibrium conditions employing ultrafiltration techniques / Anal. Biochem. 1995. V. 232. No. 2. P. 149 – 157.

Kim H. S., Wainer I. W. Simultaneous analysis of liposomal doxorubicin and doxorubicin using capillary electrophoresis and laser induced fluorescence / J. Pharm. Biomed. Anal. 2010. V. 52. No. 3. P. 372 – 376.

Lim H. et al. Temperature-dependent threshold shear stress of red blood cell aggregation / J. Biomech. 2010. V. 43. No. 3. P. 546 – 550.


Полный текст: PDF

Ссылки

  • Ссылки не определены.


** ** ** ** ** **

ISSN: 2073-8099

** ** ** ** ** **

 

Подписаться на наши издания Вы можете через почтовые каталоги агентства «Роспечать» и Объединенный каталог «Пресса России», а также на сайтах агентств «УП Урал Пресс», «Информнаука», «Прессинформ» и «Профиздат».